Preparation of asymmetrically distributed bimetal ceria (CeO2) and copper (Cu) nanoparticles in nitrogen-doped activated carbon micro/nanofibers for the removal of nitric oxide (NO) by reduction

2014 
Abstract A novel multi-scale web of carbon micro/nanofibers (ACF/CNF) was prepared by the catalytic chemical vapor deposition (CCVD), in which CeO 2 and Cu nanoparticles (NPs) were in-situ incorporated during a synthesis step. The CVD temperature was adjusted such that the prepared material had asymmetric distribution of the bimetals, with the Cu NPs located at the tips of the CNFs and the CeO 2 particles adhered to the surface of the ACF substrate. The prepared bimetals-dispersed web of ACF/CNF was treated with pyridine and the surface functionalized material was applied for the removal of NO by reduction. The complete reduction of NO was achieved at 500 °C and for 400 ppm NO concentration. Whereas the Cu NPs acted as the catalyst for the reduction, CeO 2 facilitated the incorporation of nitrogen from the pyridine source into the ACF/CNF surface. The produced nitrogen containing surface functional groups enhanced the reactivity of the material toward the NO. The bimetals CeO 2 and Cu nanoparticles (NPs)-dispersed ACF/CNF produced in this study is a potential candidate for effectively removing NO by reduction, without requiring urea or ammonia used in conventional abatement methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    26
    Citations
    NaN
    KQI
    []