Near-infrared transmission spectrum of the warm-Uranus GJ 3470b with the Wide Field Camera-3 on the Hubble Space Telescope

2014 
The atmospheric composition of low-mass exoplanets is the object of intense observational and theoretical investigations. GJ3470b is a warm uranus recently detected in transit across a bright late-type star. The transit of this planet has already been observed in several band passes from the ground and space, allowing observers to draw an intriguing yet incomplete transmission spectrum of the planet atmospheric limb. In particular, published data in the visible suggest the existence of a Rayleigh scattering slope, making GJ3470b a unique case among the known neptunes, while data obtained beyond 2 um are consistent with a flat infrared spectrum. The unexplored near-infrared spectral region between 1 and 2 um, is thus key to undertanding the atmospheric nature of GJ3470b. Here, we report on the first space-borne spectrum of GJ3470, obtained during one transit of the planet with WFC3 on board HST, operated in stare mode. The spectrum covers the 1.1--1.7-um region with a resolution of about 300. We retrieve the transmission spectrum of GJ3470b with a chromatic planet-to-star radius ratio precision of 0.15% (about one scale height) per 40-nm bins. At this precision, the spectrum appears featureless, in good agreement with ground-based and Spitzer infrared data at longer wavelengths, pointing to a flat transmission spectrum from 1 to 5 um. We present new simulations of transmission spectra for GJ3470b, which allow us to show that the HST/WFC3 observations rule out cloudless hydrogen-rich atmospheres (>10 sigma) as well as hydrogen-rich atmospheres with tholin haze (>5 sigma). Adding our near-infrared measurements to the full set of previously published data from 0.3 to 5 um, we find that a cloudy, hydrogen-rich atmosphere can explain the full transmission spectrum if, at the terminator, the clouds are located at low pressures (<1 mbar) or the water mixing ratio is extremely low (<1 ppm).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    96
    Citations
    NaN
    KQI
    []