Computer vision to automatically assess infant neuromotor risk
2019
An infant9s risk of developing neuromotor impairment is primarily assessed through visual examination by specialized clinicians. Therefore, many infants at risk for impairment go undetected, particularly in under-resourced environments. There is thus a need to develop automated, clinical assessments based on quantitative measures from widely-available sources, such as video cameras. Here, we automatically extract body poses and movement kinematics from the videos of at-risk infants (N=19). For each infant, we calculate how much they deviate from a group of healthy infants (N=85 online videos) using Naive Gaussian Bayesian Surprise. After pre-registering our Bayesian Surprise calculations, we find that infants that are at higher risk for impairments deviate considerably from the healthy group. Our simple method, provided as an open-source toolkit, thus shows promise as the basis for an automated and low-cost assessment of risk based on video recordings.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
43
References
7
Citations
NaN
KQI