High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres

2019 
Optical soliton dynamics can cause extreme alteration of the temporal and spectral shape of a propagating light pulse. This occurs at up to kilowatt peak powers in glass-core optical fibres and at the gigawatt level in gas-filled microstructured hollow-core fibres. Here, we demonstrate optical soliton dynamics in large-core hollow capillary fibres. This enables scaling of soliton effects by several orders of magnitude to the multi-millijoule energy and terawatt peak power level. We experimentally demonstrate two key soliton effects. First, we observe self-compression to sub-cycle pulses and infer the creation of sub-femtosecond field waveforms—a route to high-power optical attosecond pulse generation. Second, we efficiently generate continuously tunable high-energy (1–16 μJ) pulses in the vacuum and deep ultraviolet (110 nm to 400 nm) through resonant dispersive-wave emission. These results promise to be the foundation of a new generation of table-top light sources for ultrafast strong-field physics and advanced spectroscopy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    91
    References
    30
    Citations
    NaN
    KQI
    []