A Comprehensive Study of Synthetic DNA Preservation for DNA Data Storage

2020 
Synthetic DNA has recently risen as a viable alternative for long-term digital data storage. To ensure that information is safely recovered after storage, it is essential to appropriately preserve the physical DNA molecules encoding the data. While preservation of biological DNA has been studied previously, synthetic DNA differs in that it is typically much shorter in length, it has different sequence profiles with fewer, if any, repeats (or homopolymers), and it has different contaminants. In this paper we evaluate nine different methods used to preserve data files encoded in synthetic DNA by accelerated aging of nearly 29,000 DNA sequences. In addition to a molecular count comparison, we also sequence and analyze the DNA after aging. Our findings show that errors and erasures are stochastic and show no practical distribution difference between preservation methods. Finally, we compare the physical density of these methods and provide a stability versus density trade-offs discussion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []