Large-Eddy Simulation Study of Log Laws in a Neutral Ekman Boundary Layer

2018 
Abstract The characteristics of wind profiles in a neutral atmospheric boundary layer and their dependence on the geostrophic wind speed Ug, Coriolis parameter f, and surface roughness length z0 are examined utilizing large-eddy simulations. These simulations produce a constant momentum flux layer and a log-law layer above the surface characterized by a logarithmic increase of wind speed with height. The von Karman constant derived from the mean wind profile is around 0.4 over a wide range of control parameters. The depths of the simulated boundary layer, constant-flux layer, and surface log-law layer tend to increase with the wind speed and decrease with an increasing Coriolis parameter. Immediately above the surface log-law layer, a second log-law layer has been identified from these simulations. The depth of this upper log-law layer is comparable to its counterpart in the surface layer, and the wind speed can be scaled as , as opposed to just in the surface log-law layer, implying that in addition to s...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    10
    Citations
    NaN
    KQI
    []