The nature of deep overturning and reconfigurations of the silicon cycle across the last deglaciation.

2020 
Changes in ocean circulation and the biological carbon pump have been implicated as the drivers behind the rise in atmospheric CO2 across the last deglaciation; however, the processes involved remain uncertain. Previous records have hinted at a partitioning of deep ocean ventilation across the two major intervals of atmospheric CO2 rise, but the consequences of differential ventilation on the Si cycle has not been explored. Here we present three new records of silicon isotopes in diatoms and sponges from the Southern Ocean that together show increased Si supply from deep mixing during the deglaciation with a maximum during the Younger Dryas (YD). We suggest Antarctic sea ice and Atlantic overturning conditions favoured abyssal ocean ventilation at the YD and marked an interval of Si cycle reorganisation. By regulating the strength of the biological pump, the glacial–interglacial shift in the Si cycle may present an important control on Pleistocene CO2 concentrations. Global atmospheric CO2 varies between glacial–interglacial cycles. Here, the authors study these changes using Si records and how the Si flux and ocean circulation changes controlled the global Si distribution across the last deglaciation, based on high-resolution Si-isotope records from the Indian Sector Southern Ocean.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    104
    References
    8
    Citations
    NaN
    KQI
    []