language-icon Old Web
English
Sign In

Privacy-Preserving Hybrid K-Means

2018 
This article describes how the most widely used clustering, k-means, is prone to fall into a local optimum. Notably, traditional clustering approaches are directly performed on private data and fail to cope with malicious attacks in massive data mining tasks against attackers' arbitrary background knowledge. It would result in violation of individuals' privacy, as well as leaks through system resources and clustering outputs. To address these issues, the authors propose an efficient privacy-preserving hybrid k-means under Spark. In the first stage, particle swarm optimization is executed in resilient distributed datasets to initiate the selection of clustering centroids in the k-means on Spark. In the second stage, k-means is executed on the condition that a privacy budget is set as e/2t with Laplace noise added in each round of iterations. Extensive experimentation on public UCI data sets show that on the premise of guaranteeing utility of privacy data and scalability, their approach outperforms the state-of-the-art varieties of k-means by utilizing swarm intelligence and rigorous paradigms of differential privacy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    5
    Citations
    NaN
    KQI
    []