Scheme for Bidirectional Quantum Teleportation of Unknown Electron-Spin States of Quantum Dots within Single-Sided Cavities

2020 
We represent the mutual swapping of two unknown states using bidirectional quantum teleportation (BQT) while transferring a single photon. In our BQT scheme, two users (Alice and Bob) can mutually teleport their two unknown states of the electron-spin in quantum dots (QDs) embedded in single-sided cavities. For this BQT scheme, we employ the interactions of a photonic spin (photon) and an electron-spin (excess electron) of QDs confined in a single-sided cavity, which is feasible in practice. The previous BQT scheme which used cross-Kerr nonlinearities (XKNLs) and X-homodyne detection was inevitable the decoherence effect in optical fibers. Consequently, the proposed BQT scheme can enhance an experimental implementation with the use of QD-cavity systems under the decoherence effect and this can also be realized with current technology, compared with the previous BQT scheme based on XKNLs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    2
    Citations
    NaN
    KQI
    []