Biomechanically Excited SMD Model of a Walking Pedestrian

2016 
AbstractThrough their biomechanical properties, pedestrians interact with the structures they occupy. Although this interaction has been recognized by researchers, pedestriansbiomechanical properties have not been fully addressed. In this paper, a spring-mass-damper (SMD) system, with a pair of biomechanical forces, was used to model a pedestrian for application in vertical human–structure interaction (HSI). Tests were undertaken in a gait laboratory, where a three-dimensional motion-capture system was used to record a pedestrian’s walking motions at various frequencies. The motion-capture system produced the pedestrian’s center of mass (COM) trajectories from the captured motion markers. The vertical COM trajectory was approximated to be the pedestrian SMD dynamic responses under the excitation of biomechanical forces. SMD model parameters of a pedestrian for a specific walking frequency were estimated from a known walking frequency and the pedestrian’s weight, assuming that pedestrians always walk in ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    14
    Citations
    NaN
    KQI
    []