Observation of single-mode, Kelvin-Helmholtz instability in a supersonic flow

2015 
This manuscript reports the first observations of the Kelvin-Helmholtz instability evolving from well-characterized seed perturbations in a steady, supersonic flow. The Kelvin-Helmholtz instability occurs when two fluids move parallel to one another at different velocities, and contributes to an intermixing of fluids and transition to turbulence. It is ubiquitous in nature and engineering, including terrestrial systems such as cloud formations, astrophysical systems such as supernovae, and laboratory systems such as fusion experiments. In a supersonic flow, the growth rate of the instability is inhibited due to effects of compressibility. These effects are still not fully understood, and hold the motivation for the current work. The data presented here were obtained by developing a novel experimental platform capable of sustaining a steady shockwave over a precision-machined interface for unprecedented durations. The chosen interface was a well-characterized, single-mode sine wave, allowing us to document the evolution of individual vortices at high resolution. Understanding the behavior of individual vortices is the first of two fundamental steps towards developing a comprehensive model for the Kelvin-Helmholtz instability in a compressible flow. The results of this experiment were well reproduced with 2D hydrodynamic simulations. The platform has been extended to additional experiments, which study the evolutionmore » of different hydrodynamic instabilities in steady, supersonic flows.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    27
    Citations
    NaN
    KQI
    []