Protein Mass Effects on Formate Dehydrogenase

2017 
Isotopically labeled enzymes (denoted as “heavy” or “Born–Oppenheimer” enzymes) have been used to test the role of protein dynamics in catalysis. The original idea was that the protein’s higher mass would reduce the frequency of its normal-modes without altering its electrostatics. Heavy enzymes have been used to test if the vibrations in the native enzyme are coupled to the chemistry it catalyzes, and different studies have resulted in ambiguous findings. Here the temperature-dependence of intrinsic kinetic isotope effects of the enzyme formate dehydrogenase is used to examine the distribution of H-donor to H-acceptor distance as a function of the protein’s mass. The protein dynamics are altered in the heavy enzyme to diminish motions that determine the transition state sampling in the native enzyme, in accordance with a Born–Oppenheimer-like effect on bond activation. Findings of this work suggest components related to fast frequencies that can be explained by Born–Oppenheimer enzyme hypothesis (vibrati...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    10
    Citations
    NaN
    KQI
    []