Effects of laser polarization on responses of the fluorescent Ca2+ indicator X-Rhod-1 in neurons and myelin

2017 
Laser-scanning optical microscopes generally do not control the polarization of the exciting laser field. We show that laser polarization and imaging mode (confocal versus two photon) exert a profound influence on the ability to detect Ca2+ changes in both cultured neurons and living myelin. With two-photon excitation, increasing ellipticity resulted in a ≈50% reduction in resting X-Rhod-1 fluorescence in homogeneous bulk solution, cell cytoplasm, and myelin. In contrast, varying the angle of a linearly polarized laser field only had appreciable effects on dyes that partitioned into myelin in an ordered manner. During injury-induced Ca2+ increases, larger ellipticities resulted in a significantly greater injury-induced signal increase in neurons, and particularly in myelin. Indeed, the traditional method of measuring Ca2+ changes using one-photon confocal mode with linearly polarized continuous wave laser illumination produced no appreciable X-Rhod-1 signal increase in ischemic myelin, compared to a robust ≈50% fluorescence increase with two-photon excitation and optimized ellipticity with the identical injury paradigm. This underscores the differences in one- versus two-photon excitation and, in particular, the under-appreciated effects of laser polarization on the behavior of certain Ca2+ reporters, which may lead to substantial underestimates of the real Ca2+ fluctuations in various cellular compartments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    4
    Citations
    NaN
    KQI
    []