Highly sensitive Fourier-transform coherent anti-Stokes Raman scattering spectroscopy via genetic algorithm pulse shaping

2021 
We report highly sensitive Fourier-transform coherent anti-Stokes Raman scattering spectroscopy enabled by genetic algorithm (GA) pulse shaping for adaptive dispersion compensation. We show that the non-resonant four-wave mixing signal from water can be used as a fitness indicator for successful GA training. This method allows GA adaptation to sample measurement conditions and offers significantly improved performance compared to training using second-harmonic generation from a nonlinear crystal in place of the sample. Results include a 3× improvement to peak signal-to-noise ratio for 2-propanol measurement, as well as a 10× improvement to peak intensities from the high-throughput measurement of polystyrene microbeads under flow.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []