Human lower oesophageal sphincter relaxation is associated with raised cyclic nucleotide content.

1991 
Increases in cyclic adenosine monophosphate and cyclic guanosine monophosphate content accompany relaxation of isolated strips of opossum and canine lower oesophageal sphincter muscle. The aim of this investigation was to characterise these responses in isolated muscle from the human lower oesophageal sphincter. Electrical stimulation of enteric neurons produced a frequency dependent relaxation of the human lower oesophageal sphincter that was sensitive to tetrodotoxin. Furthermore, as previously shown in the opossum and canine lower oesophageal sphincter, cyclic guanosine monophosphate content was significantly raised in muscle strips frozen during maximum electrical field stimulation whereas cyclic adenosine monophosphate content was unchanged. In addition, sodium nitroprusside (EC50 = 0.1 microM) produced a concentration dependent relaxation of human lower oesophageal sphincter, significantly increased cyclic guanosine monophosphate content, but did not alter cyclic adenosine monophosphate content. Zaprinast (M&B 22948) and SK&F 94120, selective inhibitors of cyclic guanosine monophosphate and cyclic adenosine monophosphate phosphodiesterases, respectively, both relaxed human lower oesophageal sphincter with a potency similar to that seen in the dog or opossum lower oesophageal sphincter. Finally, the 8-bromo analogues of both cyclic adenosine monophosphate (EC50 = 420 microM) and cyclic guanosine monophosphate (EC50 = 100 microM) relaxed the human lower oesophageal sphincter. These studies suggest that in the human, as well as the canine and opossum lower oesophageal sphincter, increases in cyclic nucleotide content are associated with relaxation and increases in cyclic guanosine monophosphate are associated with the relaxation induced by stimulation of enteric neurons.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    22
    Citations
    NaN
    KQI
    []