Mapping T-cell epitopes in group A streptococcal type 5 M protein.

1991 
Abstract Group A streptococcal cell surface M proteins elicit highly protective, serotype-specific opsonic antibodies and many serotypes also elicit host cross-reactive antibodies, which may contribute to the pathogenesis of poststreptococcal autoimmune disease. To date, studies aimed at designing safe (non-host-cross-reactive, defined-epitope) M vaccines have focused almost exclusively on antibody epitopes. Here we identify T-cell epitopes recognized by T cells from BALB/c, C57BL/6, and CBA/Ca mice immunized with purified, recombinant serotype 5 M protein (rM5). The responses of rM5-specific, major histocompatibility complex class II-restricted, T-cell clones to synthetic peptides representing most of the M5 sequence identified at least 13 distinct T-cell recognition sites, including sites recognized by more than one major histocompatibility complex haplotype of mice. Although none of these sites appeared to be strongly immunodominant, an N-terminal peptide, sM5[1-35], was recognized by lymph node T cells of rM5-immunized mice and by a larger proportion of rM5-specific T-cell clones than any other individual peptide. The fine specificity of these clones was mapped with subpeptides to a single site at or overlapping the sequence ELENHDL at residues 21 to 27, which is in close proximity to previously mapped protective antibody epitopes. Other T-cell recognition sites are distributed throughout the M protein and include several in the highly conserved C-terminal region of the molecule. One of these C-terminal sites, located within residues 300 to 319, was recognized by a significant proportion of T-cell clones from two strains of mice. Helper T-cell epitopes located in the C-terminal region of M5 are likely to be widely conserved between different M serotypes and could be particularly useful in designing multivalent, defined-epitope M vaccines.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    42
    Citations
    NaN
    KQI
    []