Mesenchymal stem cell conditioned medium ameliorates diabetic serum-induced insulin resistance in 3T3-L1 cells

2020 
Abstract Background Pharmacological factors used to induce insulin resistance (IR) in in vitro models may not mimic the full in vivo features of type 2 diabetes mellitus (T2DM). This study aimed to examine the ability of diabetic serum (DS) to induce IR and investigate whether adipose-derived mesenchymal stem cell conditioned medium (ADMSC-CM) reverses DS-induced IR. Methods DS was obtained from newly diagnosed T2DM patients. IR was induced in differentiated 3T3-L1 cells by employing dexamethasone, tumor necrosis factor alpha (TNF-α), palmitate and DS. Glucose uptake (2-[N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl] amino]-2-deoxyglucose(2-NBDG) uptake assay), intracellular levels of reactive oxygen species (ROS), and superoxide radicals (O2−) (fluorescence microscopy and fluorometry) were analyzed in control and experimental samples. mRNA expression of key genes involved in glucose transport and inflammation were analyzed by using reverse transcription polymerase chain reaction (RT-PCR). Pro-inflammatory cytokines and phospho-insulin receptor substrate (IRS) (Ser-307) protein expression were analyzed by fluorescence activated cell sorter analysis. Statistical significance was determined by using one-way ANOVA followed by Tukey's multiple comparison tests. Results ADMSC-CM significantly increased the DS-mediated decrease in 2-NBDG uptake (11.01 ± 0.50 vs. 7.20 ± 0.30, P  Conclusions DS can be explored as a novel inducer of IR in in vitro studies with further standardization, substituting the conventionally used pharmacological factors. Our findings also affirm the validity of ADMSC-CM as a prospective insulin sensitizer for T2DM therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []