Blending of microbial inocula: An effective strategy for performance enhancement of clayware Biophotovoltaics microbial fuel cells.

2021 
Abstract Performance of clayware Biophotovoltaics (BPVs) with three variants of inocula namely anoxygenic photosynthetic bacteria (APB) rich Effective microbes (EM), Up-flow anaerobic sludge blanket reactor (UASB) sludge, SUPER-MIX the blend of EM and UASB inoculum were evaluated on the basis of electrical output and pollutant removal. SUPER-MIX inocula with microbial community comprising of 28.42% APB and 71.58% of other microbes resulted in peak power density of 275 mW/m2, 69.3 ± 1.74% Coulombic efficiency and 91 ± 3.96% organic matter removal. The higher performance of the SUPER-MIX than EM and UASB inocula was due to the syntrophic associations of the various APBs and other heterogenous microorganisms in perfect blend which improved biocatalytic electron transfer, electro-kinetic activities with higher redox current and bio-capacitance. The promising performance of clayware BPVs with SUPER-MIX inocula indicate the possibility of BPVs to move towards the scale-up process to minimize the investment towards pure culture by effective blending strategies of inocula.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    11
    Citations
    NaN
    KQI
    []