Characteristics of Elastomer Seals Exposed to Space Environments

2007 
Abstract A universal docking and berthing system is being developed by the National Aeronautics and Space Administration (NASA) to support all future space exploration missions to low-Earth orbit (LEO), to the Moon, and to Mars. The Low Impact Docking System (LIDS) is being designed to operate using a seal-on-seal configuration in numerous space environments, each having unique exposures to temperature, solar radiation, reactive elements, debris, and mission duration. As the LIDS seal is likely to be manufactured from an elastomeric material, performance evaluation of elastomers after exposure to atomic oxygen (AO) and ultraviolet radiation (UV) was conducted, of which the work presented herein was a part. Each of th e three candidate silicone elastomer compounds investigated, including Esterline ELA-SA-401, and Parker Hannifin S0383-70 and S0899-50, was characterized as a low outgassing compound, per ASTM E595, having percent total mass loss (TML) less than 1.0% and collected volatile condensable materials (CVCM) less than 0.1%. Each compound was compatible with the LIDS operating environment of –50 to 50 °C. The seal characteristics presented include compression set, elastomer-to-elastomer adhesion, and o-ring leakage rate. The ELA-SA-401 compound had the lowest variation in compression set with temperature. The S0383-70 compound exhibited the lowest compression set after exposure to AO and UV. The adhesion for all of the compounds was significantly reduced after exposure to AO and was further decreased after exposure to AO and UV. The leakage rates of o-ring specimens showed modest increases after exposure to AO. The leakage rates after exposure to AO and UV were increased by factors of up to 600 when compared to specimens in the as-received condition.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    34
    Citations
    NaN
    KQI
    []