Changes in Corneal Biomechanical Properties With Different Corneal Cross-linking Irradiances
2018
PURPOSE: To evaluate whether different corneal cross-linking (CXL) irradiances, all with the same delivered total energy, achieve similar increases in corneal material stiffness. METHODS: One hundred twenty-six healthy white Japanese rabbits were randomly divided into seven groups (n = 18 each). After removing the epithelium of the left corneas, six groups were exposed to riboflavin (0.22% concentration by volume) and ultraviolet-A (370 nm) at different CXL irradiations, all with the same total dose (5.4 J/cm2), ranging from 3 mW/cm2 for 30 minutes to 90 mW/cm2 for 1 minute. The left corneas of the seventh group were exposed to riboflavin without irradiation. Twelve corneas of each group were prepared for inflation testing, where they were subjected to internal hydrostatic pressure simulating intraocular pressure, whereas the other six specimens were processed for electron microscopy measurements of fibril diameter and interfibrillar spacing. The inverse modeling process was used to estimate the tangent modulus of the tissue, which is considered an accurate measure of the material stiffness. RESULTS: The stiffening effect of CXL decreased when using high irradiation/short duration settings. Compared with the group with no irradiation (NUVA group), the tangent modulus increases reduced from 212.5% in the 3mW/30min group to 196.8% in the 90mW/1min group. These increases were significant (P .05). CONCLUSIONS: Because the effect of CXL in stiffening the tissue and reducing the interfibrillar spacing consistently decreased with reducing the irradiance duration, the Bunsen-Roscoe law may not be readily applicable in the CXL of corneal tissue. [J Refract Surg. 2018;34(1):51-58.].
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
42
References
22
Citations
NaN
KQI