Theoretical study on the CH3NgF species

2010 
Geometrical parameters, harmonic vibrational frequencies, atomic charge distributions, bonding character, and relative stability of the CH3NgF (Ng = He, Ar, Kr, or Xe) species were investigated at the MP2 level of theory. CH3HeF was also predicted stable at the CCSD(T) level. All the four CH3NgF species have C 3v symmetry. Ng–F bond lengths of the CH3NgF species are all longer than those of the corresponding HNgF species. The calculated infrared intensities of the C–Ng and Ng–F stretching vibrations are much larger than those of the other vibrations, which is advantageous for the experimental spectroscopic identification of the species. The atoms in molecules (AIM) topological analysis indicated that the three Ng–F (Ng = He, Ar, or Kr) bonds are dominated by electrostatic interaction whereas the two C–Ng (Ng = Ar or Kr) bonds are dominated by covalent interaction. In contrast, the bond length analysis seems to indicate that both the Ng–F and C–Ng bonds are dominated by covalent interaction. According to the MP2 calculations, CH3HeF and CH3ArF are higher in energy than the dissociation limits CH3 + He + F and CH3 + Ar + F by 15.10 and 2.64 kcal/mol whereas CH3KrF and CH3XeF are lower in energy than CH3 + Kr + F and CH3 + Xe + F by 16.80 and 38.44 kcal/mol, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    13
    Citations
    NaN
    KQI
    []