Quarks and light (pseudo-)scalar mesons at finite chemical potential

2019 
We investigate the properties of light scalar and pseudoscalar mesons at finite (light) quark chemical potential. To this end we solve a coupled set of (truncated) Dyson-Schwinger equations for the quark and gluon propagators in Landau-gauge QCD and extend earlier results for \( N_{\mathrm{f}} = 2+1\) dynamical quark flavors to finite chemical potential at zero temperature. We then determine the meson bound state masses, wave functions, and decay constants for chemical potentials below the first-order phase transition from their homogeneous Bethe-Salpeter equation. We study the changes in the quark dressing functions and Bethe-Salpeter wave functions with chemical potential. In particular, we trace charge-conjugation parity breaking. Furthermore, we confirm the validity of the Silver-Blaze property: all dependencies of colored quantities on chemical potential cancel out in observables and we observe constant masses and decay constants up to and into the coexistence region of the first-order chiral phase transition.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    7
    Citations
    NaN
    KQI
    []