Contact Resistance Properties between Nanotubes and Various Metals from Quantum Mechanics

2007 
We report on the interfacial structure, the current−voltage (I−V) characteristics, and contact resistance of metal electrode−carbon nanotube contacts for five metals, Ti, Pd, Pt, Cu, and Au, based on first-principles quantum mechanical density functional and matrix Green's function methods. We find that Ti leads to the lowest contact resistance followed by Pd, Pt, Cu, and Au. The sequence, Ti ≫ Pd > Pt > Cu > Au, correlates well with the predicted cohesive strength of the electrode−carbon interface. In addition Ti leads to linear I−V characteristics up to ∼1 V, suggesting an Ohmic contact for both metallic and semiconductor nanotubes. However, the high reactivity of the Ti electrode at the contact to the nanotube distorts the nanotube structure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    123
    Citations
    NaN
    KQI
    []