PROCESSING AND BENAVIOR OF Fe-BASED METALLIC GLASS COMPONENTS VIA LASER-ENGINEERED NET SHAPING

2009 
In this article, the laser-engineered net shaping (LENS) process is implemented to fabricate net-shaped Fe-based Fe-B-Cr-C-Mn-Mo-W-Zr metallic glass (MG) components. The glass-forming ability (GFA), glass transition, crystallization behavior, and mechanical properties of the glassy alloy are analyzed to provide fundamental insights into the underlying physical mechanisms. The microstructures of various LENS-processed component geometries are characterized via scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The results reveal that the as-processed microstructure consists of nanocrystalline a-Fe particles embedded in an amorphous matrix. An amorphous microstructure is observed in deposited layers that are located near the substrate. From a microstructure standpoint, the fraction of crystalline phases increases with the increasing number of deposited layers, effectiuely resulting in the formation of a finctionally graded microstructure with in-situ-precipitated particles in an MG matrix. The microhardness of LENS-processed Fe-based MG components has a high value of 9.52 GPa.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []