Emergence of photoswitchable states in a graphene-azobenzene-Au platform.

2014 
The perfect transmission of charge carriers through potential barriers in graphene (Klein tunneling) is a direct consequence of the Dirac equation that governs the low-energy carrier dynamics. As a result, localized states do not exist in unpatterned graphene, but quasibound states can occur for potentials with closed integrable dynamics. Here, we report the observation of resonance states in photoswitchable self-assembled molecular(SAM)-graphene hybrid. Conductive AFM measurements performed at room temperature reveal strong current resonances, the strength of which can be reversibly gated on- and off- by optically switching the molecular conformation of the mSAM. Comparisons of the voltage separation between current resonances (∼70–120 mV) with solutions of the Dirac equation indicate that the radius of the gating potential is ∼7 ± 2 nm with a strength ≥0.5 eV. Our results and methods might provide a route toward optically programmable carrier dynamics and transport in graphene nanomaterials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    34
    Citations
    NaN
    KQI
    []