Mineralogical, chemical and K–Ar isotopic changes in Kreyenhagen Shale whole rocks and <2 μm clay fractions during natural burial and hydrous-pyrolysis experimental maturation

2014 
Abstract Progressive maturation of the Eocene Kreyenhagen Shale from the San Joaquin Basin of California was studied by combining mineralogical and chemical analyses with K–Ar dating of whole rocks and 40 Ar amounts resulting from a combined crystallization of authigenic and alteration of initial detrital K-bearing minerals of the rocks. The Al/K ratio of the naturally matured rocks is essentially constant for the entire depth sequence, indicating that there is no detectable variation in the crystallo-chemical organization of the K-bearing alumino-silicates with depth. No supply of K from outside of the rock volumes occurred, which indicates a closed-system behavior for it. Conversely, the content of the total organic carbon (TOC) content decreases significantly with burial, based on the progressive increasing Al/TOC ratio of the whole rocks. The initial varied mineralogy and chemistry of the rocks and their Hydrous pyrolysis was intended to alleviate the problem of mineral and chemical variations in initially deposited rocks of naturally matured sequences. However, experiments on aliquots from thermally immature Kreyenhagen Shale outcrop sample did not mimic the results from naturally buried samples. Experiments conducted for 72 h at temperatures from 270 to 365 °C did not induce significant changes at temperatures above 310 °C in the mineralogical composition and K–Ar ages of the rock and 40 Ar, together with losses of organic matter as oil, gas, and aqueous organic species. Large amounts of smectite layers in the illite–smectite mixed layers of the pyrolyzed outcrop 2 O 2 . Its presence in the smectite interlayers is apparent by the inability of the clay fraction to fully expand or collapse once bitumen generation from the thermal decomposition of the kerogen is completed, and by almost invariable K–Ar ages confirming for the lack of any K supply and/or radiogenic 40 Ar removal. This suggests that once bitumen impregnates the porosity of a progressively maturing source rock, the pore system is no longer wetted by water and smectite to illite conversion ceases. Experimental attempts to evaluate the smectite conversion to illite should preferentially use low-TOC rocks to avoid inhibition of the reaction by bitumen impregnation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    5
    Citations
    NaN
    KQI
    []