A Novel Personal Passive Sampler for Collecting Gaseous Phthalates.

2021 
Dermal absorption of gaseous chemicals is an important contributor to increased health risk and has yet to be adequately addressed due to the lack of available sampling techniques. In the present study, a novel personal passive sampler consisting of a housing (embracing a polydimethylsiloxane (PDMS) disk as the sorbent phase, a membrane filter, and a stainless-steel mesh) and a watchband (traditional wristband) was constructed and used to characterize gaseous phthalates (PAEs) near the air-skin interface. In a real-life setting, the utility of the passive sampler was validated by comparing the composition profiles of PAEs in the PDMS disks and in active samples and watchbands. The compositions of PAEs were consistent in disks and gaseous constituents from ambient air, with low-molecular-weight (<306 g mol-1) PAEs accounting for 87-100% and approximately 100%, respectively. Appreciable amounts of diisononyl phthalate, diisodecyl phthalate, dinonyl phthalate, and skin lipid (e.g., squalene) were detected in watchbands but not in disks. Apparently, the passive sampler can prevent particles and skin-related chemicals from adhering to the disk and collect gaseous PAEs only. The vast majority of PAEs in watchbands was associated with nongaseous constituents. The present study demonstrated that the sampling strategy is a key factor in exposure assessment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []