A novel node-level structure embedding and alignment representation of structural networks for brain disease analysis.

2020 
Abstract Brain networks based on various neuroimaging technologies, such as diffusion tensor image (DTI) and functional magnetic resonance imaging (fMRI), have been widely applied to brain disease analysis. Currently, there are several node-level structural measures (e.g., local clustering coefficients and node degrees) for representing and analyzing brain networks since they usually can reflect the topological structure of brain regions. However, these measures typically describe specific types of structural information, ignoring important network properties (i.e., small structural changes) that could further improve the performance of brain network analysis. To overcome this problem, in this paper, we first define a novel node-level structure embedding and alignment (nSEA) representation to accurately characterize the node-level structural information of the brain network. Different from existing measures that characterize a specific type of structural properties with a single value, our proposed nSEA method can learn a vector representation for each node, thus contain richer structure information to capture small structural changes. Furthermore, we develop an nSEA representation based learning (nSEAL) framework for brain disease analysis. Specifically, we first perform structural embedding to calculate node vector representations for each brain network and then align vector representations of all brain networks into the common space for two group-level network analyses, including a statistical analysis and brain disease classifications. Experiment results on a real schizophrenia dataset demonstrate that our proposed method not only discover disease-related brain regions that could help to better understand the pathology of brain diseases, but also improve the classification performance of brain diseases, compared with state-of-the-art methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    1
    Citations
    NaN
    KQI
    []