Ground-Based Polarimetric SAR Interferometry for the Monitoring of Terrain Displacement Phenomena–Part I: Theoretical Description
2015
Ground-based synthetic aperture radar (SAR) (GB-SAR) sensors represent an effective solution for the monitoring of ground displacement episodes. Initially, the most GB-SAR sensors were based on vector network analyzers (VNA). This type of solution, characterized by a slow scanning time comparable to the decorrelation of the troposphere medium, compromised in many cases the quality of final products for the application of persistent scatterer interferomerty (PSI) techniques. The development of GB-SAR sensors based on the use of stepped linear frequency modulated continuous wave (SLFMCW) signals has led to significant improvements during the last years. They have allowed fulfilling the need of temporal homogeneity of the troposphere during the acquisition time and, moreover, they have favored the acquisition of reliable polarimetric SAR (PolSAR) measurements without drastically increasing the scanning time. This fact has boosted the inclusion of polarimetric SAR interferometry (PolInSAR) algorithms in PSI processing chains, which are demonstrating to outperform classical single-polarimetric performances. The objective of this paper is twofold. On the one hand, a general overview of the polarimetric RiskSAR sensor, developed by the Universitat Politecnica de Catalunya (UPC), is put forward as an example of SLFMCW GB-SAR system implementation. On the other hand, a complete theoretical description of ground-based SAR (GB-SAR) interferometry (GB-InSAR) techniques for PSI purposes is widely discussed. The adaptation of the Coherent Pixels Technique to obtain the linear and nonlinear components of ground displacement phenomena is proposed. In the second part of this paper, the displacement maps and time series over two very different scenarios are presented in order to show the feasibility of GB-SAR sensors for terrain displacement monitoring applications.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
61
References
32
Citations
NaN
KQI