Learning a Mixture of Gaussians via Mixed Integer Optimization
2019
We consider the problem of estimating the parameters of a multivariate Gaussian mixture model (GMM) given access to n samples that are believed to have come from a mixture of multiple subpopulations. State-of-the-art algorithms used to recover these parameters use heuristics to either maximize the log-likelihood of the sample or try to fit first few moments of the GMM to the sample moments. In contrast, we present here a novel mixed-integer optimization (MIO) formulation that optimally recovers the parameters of the GMM by minimizing a discrepancy measure (either the Kolmogorov–Smirnov or the total variation distance) between the empirical distribution function and the distribution function of the GMM whenever the mixture component weights are known. We also present an algorithm for multidimensional data that optimally recovers corresponding means and covariance matrices. We show that the MIO approaches are practically solvable for data sets with n in the tens of thousands in minutes and achieve an averag...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
15
References
2
Citations
NaN
KQI