Food restriction promotes signaling effort in response to social challenge in a short-lived electric fish.

2012 
Abstract Vertebrates exposed to stressful conditions release glucocorticoids to sustain energy expenditure. In most species elevated glucocorticoids inhibit reproduction. However individuals with limited remaining reproductive opportunities cannot afford to forgo reproduction and should resist glucocorticoid-mediated inhibition of reproductive behavior. The electric fish Brachyhypopomus gauderio has a single breeding season in its lifetime, thus we expect males to resist glucocorticoid-mediated inhibition of their sexual advertisement signals. We studied stress resistance in male B. gauderio (i) by examining the effect of exogenous cortisol administration on the signal waveform and (ii) by investigating the effect of food limitation on androgen and cortisol levels, the amplitude of the electric signal waveform, the responsiveness of the electric signal waveform to social challenge, and the amount of feeding activity. Exogenous cortisol administration did reduce signal amplitude and pulse duration, but endogenous cortisol levels did not rise with food limitation or social challenge. Despite food limitation, males responded to social challenges by further increasing androgen levels and enhancing the amplitude and duration of their electric signal waveforms. Food-restricted males increased androgen levels and signal pulse duration more than males fed ad libitum . Socially challenged fish increased food consumption, probably to compensate for their elevated energy expenditure. Previous studies showed that socially challenged males of this species simultaneously elevate testosterone and cortisol in proportion to signal amplitude. Thus, B. gauderio appears to protect its cortisol-sensitive electric advertisement signal by increasing food intake, limiting cortisol release, and offsetting signal reduction from cortisol with signal-enhancing androgens.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    14
    Citations
    NaN
    KQI
    []