Gravity Wave and Tidal Measurement Capabilities across the Mesopausefrom a Space-borne Lidar

2017 
A new proposed NASA mission, ACaDAMe (Atmospheric Coupling and Dynamics Across the Mesopause region) consists of a space-borne sodium lidar, mounted upon the International Space Station. Combining the advantages of a lidar with the near-global coverage provided by the ISS (orbital inclination: 51.6o, orbital period: 92.7 mins), the ACaDAMe mission has enormous potential to quantify the waves that provide the major momentum and energy forcing of the Ionosphere-Thermosphere-Mesosphere system from below. Specifically, this mission seeks to quantify the dominant wave momentum and energy inputs across the mesopause, and identify the near-global distribution of gravity waves and tides that impact the Thermosphere/Ionosphere and are the terrestrial drivers of Space Weather. Leveraging on existing instrument heritage and expertise, this nadir-pointing narrowband lidar would be tuned to two-frequencies (at the peak of the D2a line, and at the minimum between the D2a and D2b peaks), with a capability to retrieve vertically-resolved [Na] and temperature, T, for both nighttime and daytime conditions. Here we outline the proposed mission, present an error characterization for [Na] and T, and describe the capabilities to estimate gravity waves and tidal features which will provide a crucial role in advancing our understanding of small-scale dynamical processes and coupling across this important atmospheric region.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []