Numerical Analysis on Natural Convection Heat Transfer of a Heat Sink with Cylindrical Pin Fin

2014 
As technology advancement progressed in this information age or commonly known as digital age, thermal management has equally improved to keep up with demands from the electronic sector. Hence, heat sink study has become more and more prominent. Natural convection holds advantages since it is maintenance free and has zero power consumption. The purpose of this research is to study the heat transfer performance of heat sink with parametric variations of number and height of pin fin at temperature 308K, 323K, 338K, 353K and 368K. In addition, effect of porosity ranges from 0.524 to 0.960 on thermal resistance was investigated as well. Study found that heat transfer coefficient increases as temperature difference between heat sink and ambient increases. Thermal resistance decreases when porosity increases until it reaches the minimum and subsequently increases. The optimum porosity shown in this study is around 88%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    6
    Citations
    NaN
    KQI
    []