Configurational diffusion of asphaltenes in fresh and aged catalyst extrudates. Final technical report, September 20, 1991--September 30, 1996

1998 
The overall objective of this project was to investigate the diffusion of coal and petroleum asphaltenes in the pores of a supported catalyst. Experimental measurements together with mathematical modeling was conducted to determine how the diffusion rate of asphaltenes, as well as some model compounds, depended on molecule sizes and shapes. The process of diffusion in the pores of a porous medium may occur by several mechanisms. Hindered diffusion occurs when the sizes of the diffusion molecules are comparable to those of the porous pores through which they are diffusing. Hindered diffusion phenomena have been widely observed in catalytic hydrotreatment of asphaltenes, heavy oils, coal derived liquids, etc. Pore diffusion limitations can be greater in spent catalysts due to the deposition of coke and metals in the pores. In this work, a general mathematical model was developed for the hindered diffusion-adsorption of solute in a solvent onto porous materials, e. g. catalysts, from a surrounding bath. This diffusion model incorporated the nonuniformities of pore structures in the porous media. A numerical method called the Method of Lines was used to solve the nonlinear partial differential equations resulting from the mathematical model. The accuracy of the numerical solution was verified by both a mass balance in the diffusion system and satisfactory agreement with known solutions in several special cases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []