Tunable Mechanical, Antibacterial, and Cytocompatible Hydrogels Based on a Functionalized Dual Network of Metal Coordination Bonds and Covalent Crosslinking

2018 
Tissue engineering has become a rapidly developing field of research because of the increased demand from regenerative medicine, and hydrogels are a promising tissue engineering scaffold because of their three-dimensional structures. In this study, we constructed novel hydrogels of gelatin methacrylate (GelMA) hydrogels modified with histidine and Zn2+ (GelMA-His-Zn(II)), which possessed fascinating antibacterial properties and tunable mechanical properties because of the formation of a functionalized dual network of covalent crosslinking and metal coordination bonds. The introduction of metal coordination bonds not only improves the strength of the GelMA hydrogels with covalent crosslinking but also makes their mechanical properties tunable via adjustments to the concentration of Zn2+. The synergistic effect of Zn2+ and the imidazole groups gives the GelMA-His-Zn(II) hydrogels fascinating antibacterial properties (up to 100% inhibition). Counting the colony forming units and compression tests confirmed t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    30
    Citations
    NaN
    KQI
    []