Cationic methylcellulose derivative with serum-compatibility and endosome buffering ability for gene delivery systems.

2014 
Abstract In this work, methylcellulose was employed as a template polymer with graft of polyethylenimine 0.8 kDa (PEI0.8k) for gene delivery systems. Synthesized PEI-grafted oxidized methylcellulose (MC-PEI) could condense pDNA into positively charged and nano-sized particles, which could protect pDNA from serum nuclease. The cytotoxicity of MC-PEI was minimal in both serum-free and serum condition due to the biocompatibility of methylcellulose and low cytotoxicity of PEI0.8k. MC-PEI polyplex also showed low cytotoxicity in serum condition. In serum condition, MC-PEI showed less decreased transfection efficiency than PEI25k, meaning good serum-compatibility of MC-PEI. Bafilomycin A1-treated transfection results indicate that the transfection of MC-PEI is mediated via endosomal escape by endosome buffering ability. Flow cytometry results suggest that MC-PEI polyplex could be internalized into cells and efficiently deliver pDNA to cells due to its serum-compatibility. These results demonstrate that MC-PEI possesses a potential for efficient gene delivery systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    16
    Citations
    NaN
    KQI
    []