Calaxin drives sperm chemotaxis by Ca2+-mediated direct modulation of a dynein motor

2012 
Sperm chemotaxis occurs widely in animals and plants and plays an important role in the success of fertilization. Several studies have recently demonstrated that Ca2+ influx through specific Ca2+ channels is a prerequisite for sperm chemotactic movement. However, the regulator that modulates flagellar movement in response to Ca2+ is unknown. Here we show that a neuronal calcium sensor, calaxin, directly acts on outer-arm dynein and regulates specific flagellar movement during sperm chemotaxis. Calaxin inhibition resulted in significant loss of sperm chemotactic movement, despite normal increases in intracellular calcium concentration. Using a demembranated sperm model, we demonstrate that calaxin is essential for generation and propagation of Ca2+-induced asymmetric flagellar bending. An in vitro motility assay revealed that calaxin directly suppressed the velocity of microtubule sliding by outer-arm dynein at high Ca2+ concentrations. This study describes the missing link between chemoattractant-mediated Ca2+ signaling and motor-driven microtubule sliding during sperm chemotaxis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    66
    Citations
    NaN
    KQI
    []