New JVLA observations at 3 GHz and 5.5 GHz of the `Kite' radio source in Abell 2626

2017 
We report on new JVLA observations performed at 3 GHz and 5.5 GHz of Abell 2626. The cluster has been the object of several studies in the recent years due to its peculiar radio emission, which shows a complex system of symmetric radio arcs characterized by a steep spectrum. The origin of these radio sources is still unclear. Due to their mirror symmetry toward the center, it has been proposed that they may be created by pairs of precessing jets powered by the inner AGN. The new JVLA observations were requested with the specific aim of detecting extended emission on frequencies higher than 1.4 GHz, in order to constrain the jet-precession model by analyzing the spectral index and radiative age patterns alongs the arcs. We performed a standard data reduction of the JVLA datasets with the software CASA. By combining the new 3 GHz data with the archival 1.4 GHz VLA dataset we produced a spectral index maps of the extended emission, and then we estimated the radiative age of the arcs by assuming that the plasma was accelerated in moving hot-spots tracing the arcs. Thanks to the high sensitivity of the JVLA, we achieve the detection of the arcs at 3 GHz and extended emission at 5.5 GHz. We measure a mean spectral index <-2.5 for the arcs up to 3 GHz. No clear spectral index, or radiative age, trend is detected across the arcs which may challenge the interpretation based on precession or put strong constraints on the jet-precession period. In particular, by analyzing the radiative age distribution along the arcs, we were able to provide for the first time a time-scale < 26 Myr of the jet-precession period.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []