Phosphorus-doped Carbon Nitride Nanosheets as Efficient White-LED-Light-Driven Photocatalyst for Hydrogen Evolution and Tetracycline Degradation

2021 
g-C3N4 has received much attention due to its role in photocatalytic hydrogen evolution and contaminants degradation. Nevertheless, the photocatalytic property of bulk g-C3N4 (BCN) is seriously restricted owing to its short photo-generated carrier lifetime, small specific surface area and low visible light utilization rate, etc. In this study, nanosheet constructing and heteroatom phosphorus (P) doping, as two important strategies, are synergistically adopted to co-enhance its activity. The controllable P atoms were successfully doped into the framework of g-C3N4 nanosheet (NCN-P) through forming P-N bond. The optimized NCN-P sample displays an excellent H2 production rate (3263.99 µmol·g−1·h−1) under white LED light irradiation, which is more than 11.6 times that of the BCN. Moreover, it also exhibits excellent photocatalytic degradation ratio of tetracycline reached 80% in 1 h. Furthermore, the optimized NCN-P sample still maintains robust photocatalytic performance after recycling tests, making it as a bright prospect photocatalyst for solar energy utilization and contaminants removal.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    0
    Citations
    NaN
    KQI
    []