Influence of temperature and ZDDP concentration on tribochemistry of surface-capped molybdenum sulfide nanoparticles studied by XANES spectroscopy

2007 
The tribological behavior of surface-capped MoS3 nanoparticles (nano-MoS3) in hydrocarbon oils was studied in combination with ZDDP at test temperatures in the range of 100–160 °C and at ZDDP content of 0–1.0 wt% in oil. It was demonstrated that this combination of additives demonstrates high antiwear and antifriction efficiency, especially at high temperatures and low ZDDP content. X-ray Absorption Near Edge Structure (XANES) spectroscopy at the sulfur, molybdenum, and phosphorus edges was used to identify the chemical species in the tribochemical films. It was established that the tribofilms formed by combination of ZDDP and nano-MoS3 contain phosphate-based layers incorporating MoS2-type fragments. An increase in temperature and ZDDP content results in an increase in tribofilm thickness, while the relative Mo content in tribofilm decreases. Under the tested conditions, the best tribological properties are demonstrated by the composition comprising 500 ppm Mo and 0.1 wt% ZDDP in oil.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    13
    Citations
    NaN
    KQI
    []