Impact of VUV photons on SiO2 and organosilicate low-k dielectrics: General behavior, practical applications, and atomic models

2019 
This paper presents an in-depth overview of the application and impact of UV/VUV light in advanced interconnect technology. UV light application in BEOL historically was mainly motivated by the need to remove organic porogen and generate porosity in organosilicate (OSG) low-k films. Porosity lowered the film's dielectric constant, k, which enables one to reduce the interconnect wiring capacitance contribution to the RC signal delay in integrated circuits. The UV-based low-k film curing (λ > 200 nm) proved superior to thermal annealing and electron beam curing. UV and VUV light also play a significant role in plasma-induced damage to pSiCOH. VUV light with λ < 190–200 nm is able to break Si-CH3 bonds and to make low-k materials hydrophilic. The following moisture adsorption degrades the low-k properties and reliability. This fact motivated research into the mechanisms of UV/VUV photon interactions in pSiCOH films and in other materials used in BEOL nanofabrication. Today, the mechanisms of UV/VUV photon in...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    491
    References
    16
    Citations
    NaN
    KQI
    []