PCNA ubiquitination protects stalled replication forks from DNA2-mediated degradation by regulating Okazaki fragment maturation and chromatin assembly

2019 
Upon genotoxic stress, PCNA ubiquitination allows for replication of damaged DNA by recruiting lesion-bypass DNA polymerases. However, PCNA is also ubiquitinated during normal S-phase progression. By employing ubiquitination-deficient 293T and RPE1 cells generated through CRISPR/Cas9 genome editing, we show that this modification promotes cellular proliferation and suppression of genomic instability under normal growth conditions. Loss of PCNA-ubiquitination results in DNA2-mediated but MRE11- independent nucleolytic degradation of nascent DNA at stalled replication forks. This degradation is linked to defective gap-filling in the wake of the replication fork, and incomplete Okazaki fragment synthesis and maturation, thus interfering with efficient PCNA unloading by ATAD5 and subsequent nucleosomal deposition by CAF-1. Moreover, concomitant loss of PCNA-ubiquitination and BRCA2 results in a synergistic increase in nascent DNA degradation and sensitivity to PARP-inhibitors. In conclusion, we show that by ensuring efficient Okazaki fragment maturation, PCNA-ubiquitination protects fork integrity and promotes the resistance of BRCA-deficient cells to PARP- inhibitors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    2
    Citations
    NaN
    KQI
    []