Responses of gaseous sulfuric acid and particulate sulfate to reduced SO2 concentration: A perspective from long-term measurements in Beijing.

2020 
SO2 concentration decreased rapidly in recent years in China due to the implementation of strict control policies by the government. Particulate sulfate (pSO4(2-)) and gaseous H2SO4 (SA) are two major products of SO2 and they play important roles in the haze formation and new particle formation (NPF), respectively. We examined the change in pSO4(2-) and SA concentrations in response to reduced SO2 concentration using long-term measurement data in Beijing. Simulations from the Community Multiscale Air Quality model with a 2-D Volatility Basis Set (CMAQ/2D-VBS) were used for comparison. From 2013 to 2018, SO2 concentration in Beijing decreased by ~81% (from 9.1 ppb to 1.7 ppb). pSO4(2-) concentration in submicrometer particles decreased by ~60% from 2012-2013 (monthly average of ~10 mug.m(-)(3)) to 2018-2019 (monthly average of ~4 mug.m(-)(3)). Accordingly, the fraction of pSO4(2-) in these particles decreased from 20-30% to <10%. Increased sulfur oxidation ratio was observed both in the measurements and the CMAQ/2D-VBS simulations. Despite the reduction in SO2 concentration, there was no obvious decrease in SA concentration based on data from several measuring periods from 2008 to 2019. This was supported by the increased SA:SO2 ratio with reduced SO2 concentration and condensation sink. NPF frequency in Beijing between 2004 and 2019 remains relatively constant. This constant NPF frequency is consistent with the relatively stable SA concentration in Beijing, while different from some other cities where NPF frequency was reported to decrease with decreased SO2 concentrations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    82
    References
    11
    Citations
    NaN
    KQI
    []