Temperature distribution in semiconductor wafers heated in a hot-wall-type rapid diffusion furnace

1994 
Transient temperature distribution was calculated for wafers heated in a new hot-wall-type rapid diffusion furnace. Two-dimensional radiative heat transfer was combined with unsteady conduction in wafers and the furnace. The furnace is composed of parallel plate heaters, and heats wafers to a temperature of about 1000/spl deg/C. The heaters are divided into four zones and their heating powers are PID-controlled. Two wafers on a holder are inserted vertically from the bottom of the furnace, and heated for three minutes. The calculated results show the wafer temperature approached the desired heating temperature about one minute after insertion, agreeing with experimental results. The average temperature distribution in the wafers during heating is found to be within /spl plusmn/1/spl deg/C at 1000/spl deg/C, when the heating power (temperature) of the four zones is properly controlled. The effects of heater temperature, insertion speed, and holder thickness on the temperature distribution in wafers were calculated. The new hot-wall-type rapid diffusion furnace can be used to manufacture future VLSI. >
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    0
    Citations
    NaN
    KQI
    []