Simulation of thermal influence between independent geothermal boreholes in densely populated areas

2021 
Abstract Ground Source Heat Pumps (GSHPs) connected to Borehole Heat Exchangers (BHEs) are a fast-growing technology for thermally efficient buildings. Therefore, areas with several independent GSHP installations close to each other are becoming more and more common. To guarantee an optimal operation of these systems, it is necessary to design them considering the influence of the neighbouring installations. However, a tailored model for this scope has not been found in the literature. In this paper, we aim at filling this gap by proposing and validating a methodology to calculate the thermal influence between neighbouring independent boreholes. It is based on the Finite Line Source (FLS) model and prescribes novel boundary conditions, tailored to hydraulically independent boreholes. The methodology allows to prescribe different thermal loads to different BHEs and imposes uniform temperature boundary condition on each borehole wall. We also show how to implement and apply the model. Our application shows a thermal influence of up to 1.5 K during the lifetime of a GSHP and of up to 0.8 K during the first year of operation in an area with a relatively low number of installations, underlying the importance of considering the thermal influence and the usefulness of our proposed model. Finally, a sensitivity study on the ground thermal conductivity shows the importance of a correct estimation of this property for accurate simulation results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []