Research Update: Ca doping effect on the Li-ion conductivity in NASICON-type solid electrolyte LiZr2(PO4)3: A first-principles molecular dynamics study

2018 
In this work, we used a density functional theory-based molecular dynamics simulation to investigate the Ca content-dependent Li-ion conductivity of NASICON-type Li1+2xCaxZr2-x(PO4)3 (LCZP) solid electrolytes (0.063 ≤ x ≤ 0.375) which exhibit a Li-excess chemical composition. The LCZP systems show a higher room temperature Li-ion conductivity and a lower activation energy than pristine LiZr2(PO4)3 (LZP), and the tendencies of those properties agree with the experimental results. In addition, the Li-ion conduction mechanisms in LCZP were clarified by analyzing the radial distribution functions and site displacement functions obtained from our molecular dynamics simulations. For minimal Ca substitution for LZP, the Li-ion conductivity is enhanced because of the creation of interstitial Li ions by Ca doping in the LCZP systems; the frequency of collisions with Li ions dramatically increases. For substantial Ca substitution for LZP, the Li-ion conductivity gradually worsened because some Li ions were trapped ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    14
    Citations
    NaN
    KQI
    []