ERL R&D: Laser and Laser Light Transport

2010 
Operation of the photocathode gun in the ERL requires that a tightly controlled optical pulse train, consisting of temporally and spatially shaped pulses, be delivered at the photocathode in synchrony with the RF field in the gun cavity. The pulse train must also be dynamically variable, in order to tune or ramp up the current in the ERL. A laser was developed especially for this task by Lumera Laser GmbH, of Kaiserslautern Germany, under design supervision and review of the ERL project. Following the final design review, the laser was delivered in August 2009. Preliminary tests certifying its compliance with design specifications have been performed, with further tests planned following the final certification of the ERL laser room in January 2010. The development of the necessary spatial and temporal shaping techniques is an ongoing project: proof of principle experiments have been successfully carried out with a laser of similar pulse width, operating at 532 nm and 81.5 MHz. The next stage is to evaluate the application of these techniques and alternatives, using the operations laser. A transport line has been designed and the propagation of a shaped pulse through it to the photocathode simulated and tested experimentally. As the performancemore » of the complete photocathode drive system is critical for ERL operation, an extensive set of diagnostics will be in place to monitor and maintain its performance. The block diagram in Fig. 1 breaks the optical system down into its basic components, which are discussed.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    0
    Citations
    NaN
    KQI
    []