Physical study on the vibrated packing densification of mono-sized cylindrical particles
2016
Systematic physical experiments examining the packing densification of mono-sized cylindrical particles subject to 3D mechanical vibration were carried out. The influence of vibration conditions such as vibration time, frequency, amplitude, vibration strength, container size, and the aspect ratio and sphericity of the particle on the packing density were analyzed and discussed. For each initial packing density with a certain aspect ratio, operating parameters were optimized to achieve much denser packing. The results indicate that the packing density initially increases with vibration time and then remains constant. The effects of vibration frequency and amplitude on the packing densification have similar trends, i.e. the packing density first increases with the vibration frequency or amplitude to a high value and then decreases; too large or small frequency or amplitude does not enhance densification. Increasing the container size can reduce container wall effects and help achieve a high packing density. Varying the particle aspect ratio and sphericity can lead to different dense random packing structures. Overall, based on results of the examined systems, the highest random packing density obtained in an infinite sized container can reach 0.73, which agrees well with corresponding numerical and analytical results in the literature.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
63
References
21
Citations
NaN
KQI