Estimating Video Popularity from Past Request Arrival Times in a VoD System

2020 
Efficient provision of Video-on-Demand (VoD) services requires that popular videos are stored in a cache close to users. Video popularity (defined by requested count) prediction is, therefore, important for optimal choice of videos to be cached. The popularity of a video depends on many factors and, as a result, changes dynamically with time. Accurate video popularity estimation that can promptly respond to the variations in video popularity then becomes crucial. In this paper, we analyze a method, called Minimal Inverted Pyramid Distance (MIPD), to estimate a video popularity measure called the Inverted Pyramid Distance (IPD). MIPD requires choice of a parameter, $k$ , representing the number of past requests from each video used to calculate its IPD. We derive, analytically, expressions to determine an optimal value for $k$ , given the requirement on ranking a certain number of videos with specified confidence. In order to assess the prediction efficiency of MIPD, we have compared it by simulations against four other prediction methods: Least Recency Used (LRU), Least Frequency Used (LFU), Least Recently/Frequently Used (LRFU), and Exponential Weighted Moving Average (EWMA). Lacking real data, we have, based on an extensive literature review of real-life VoD system, designed a model of VoD system to provide a realistic simulation of videos with different patterns of popularity variation, using the Zipf (heavy-tailed) distribution of popularity and a non-homogeneous Poisson process for requests. From a large number of simulations, we conclude that the performance of MIPD is, in general, superior to all of the other four methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []