Seasonal environments drive convergent evolution of a faster pace-of-life in tropical butterflies

2020 
Global change can trigger shifts in habitat stability and shape the evolution of organismal lifehistory strategies, with unstable habitats typically favouring a faster pace-of-life. We test this hypothesis in species-rich Mycalesina butterflies that have undergone parallel radiations in Africa, Asia, and Madagascar. First, our ancestral state reconstruction of habitat preference, using ~85% of extant species, revealed that early forest-linked lineages began to invade seasonal savannahs during the Late Miocene-Pliocene. Second, rearing replicate pairs of forest and savannah species from the African and Malagasy radiation in a common garden experiment, and utilising published data from the Asian radiation, demonstrated that savannah species consistently develop faster, have smaller bodies, higher fecundity with an earlier investment in reproduction, and reduced longevity, compared to forest species across all three radiations. We argue that time-constraints for reproduction favoured the evolution of a faster pace-of-life in savannah species that facilitated their persistence in seasonal habitats.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    91
    References
    1
    Citations
    NaN
    KQI
    []